U of A - Houston Presentation

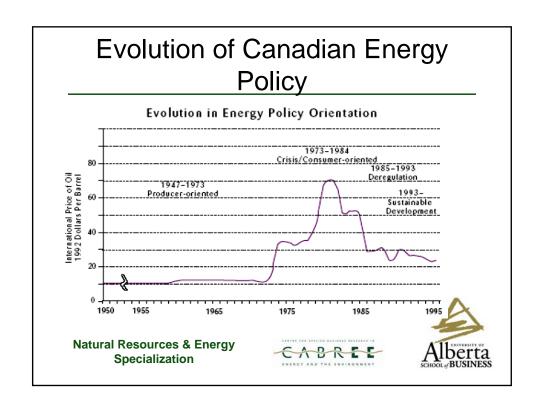
Renewable Energy

Presented by: Sukhraj Batoo, Ginni Sangha, Gurpreet Purhar, & Samir Rashid School of Business University of Alberta

Natural Resources & Energy Specialization

Overview

- Canadian Energy Policy
- Factors that influence policy
- Types of renewable energy
- Use of renewable energy in the electricity sector
- Cost comparison



Canadian Energy Policy

Canadian Energy Policy is market based and oriented towards sustainable development, the economic well being of Canadians and the environment.

Renewable Energy Policy Drivers

Energy Policy is shaped by both Canada's domestic and international commitments.

Natural Resources & Energy Specialization

International Drivers

1) Kyoto Protocol (1997)

Reduce green house gas emissions to 6% below 1990 levels

2) Canada – U.S. Clean Air Agreement

Govern the emissions of sulphur dioxide and nitrous oxides.

Domestic Drivers

- Western and the Atlantic Accords
 Mainly influences and shapes
 Canada's energy markets
- 2) Constitutional Division In Canada's constitution, jurisdiction over energy is divided between the federal and provincial government

Natural Resources & Energy Specialization

Natural Resources & Energy

Specialization

Federal and Provincial Jurisdictions

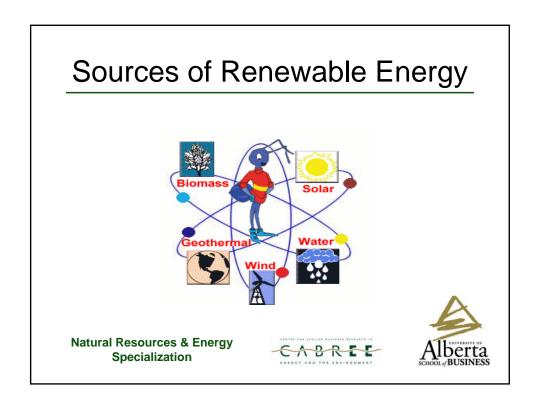
Provincial and Territorial Federal Government Governments resource management within resource management on frontier provincial boundaries · intra-provincial trade and · uranium and/or nuclear power commerce interprovincial and/or international intra-provincial environmental trade and commerce impacts trans-boundary environmental impacts policies of national interest: economic development - energy security - federal energy science and technology

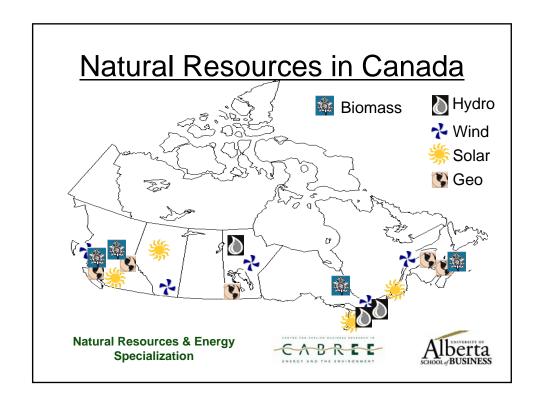
CABREE

Alberta Energy Policies

- Setup Climate Change Central as an agency to "promote the development of innovate responses to global climate change" (1999)
- Deregulation of energy (2001)
 Committed to buying 45% of its energy to heat government owned facilities from green sources (2003)

Natural Resources & Energy Specialization




Alberta Energy Policies

- Solar Thermal Building Products program to help technology transfer from the lab into the marketplace (2005)
- Creation of the Energy Innovation Fund (2006)
- \$239M commitment to bioenergy through a nine-point bioenergy plan (2006)

Contributions

Source	Capacity (MW)	Supply (GWh/yr)	% of Total RET
Wind	316	970	8%
Water	1800	9460	78%
Solar	0.092	0.1	0%
Biomass	128	900	7%
Geothermal	0	0	0%

Natural Resources & Energy Specialization

Wind Power

Pros	Cons	
No greenhouse gas emissions associated with electricity generation	Wind power facilities could be aesthetically unpleasing	
Low operational and maintenance costs	Soil erosion problems in the wind farms	
	Blades in wind farms have noise impacts	
	Bird mortality is an issue	

Biomass

Pros	Cons	
Uses fuel crops, agricultural wastes, sewage sludge, and waste to produce energy	Has some nitrogen oxides, a small amount of sulfur dioxide, and carbon dioxide emissions depending on technology used	
Satisfies 5.9% of Canada's primary energy demand	Using water from lakes or rivers can result in negative impacts on the aquatic life.	
Provides a benefit by freeing areas of land that might otherwise have been used for landfills or waste piles	Produce ash as a by-product	

Natural Resources & Energy Specialization

Geothermal

Pros	Cons
Potential for long-term continuous use	Water usage
Minimal use of land	Could result in ground subsidence
No emissions	Could be expensive to locate areas of hot rock
Readily available around the world	

Wind Power vs. Biomass

Wind Power	Biomass	
Location dependent on weather patterns	Location dependent on feedstock availability	
Can operate unattended and with low maintenance	Significant operation and maintenance costs	
Operating availability is high (98%)	Operating availability dependent on maintenance	
No emissions	Has emissions depending on the fuel and technology used	

Natural Resources & Energy Specialization

Wind Power vs. Biomass

Technology	Wind Power	Biomass
Capacity (MW)	50	80
Heat Rate (BTU/ kWh)	10,280	8,911
Overnight Cost (2003 \$ / kW)	1,134	1,757
Variable O&M (2003 \$mills / kW)	0	2.96
Fixed O&M (2003 \$ / kW)	26.81	47.18
Lead Time (years)	3	4

Conclusions

- Great potential for renewable energy in Canada
- Need more incentives from the Provincial and Federal Governments
- Governments should promote renewable energy by using electricity generated by these sources

Natural Resources & Energy Specialization

For more information

- Contact:
 - Batoo.Sukhraj@Syncrude.com
 - Sangha.Ginni@Syncrude.com
 - Purhar.Gurpreet@Syncrude.com
 - Samir.Rashid@Matrikon.com

